Kamis, 18 November 2021

SOAL KOMPOSISI FUNGSI DAN INVERS FUNGSI

Nama: Allisya Vita Dwi Savitri

Kelas: X IPS 1

Absen: 3


1. Jika f(x) = 3x + 2 dan g(x) = 4x2 . Maka (f o g)(x) dan (g o f)(x) adalah …

Jawab:

(f o g)(x) = f (g(x))

(f o g)(x) = f (4x2)

(f o g)(x) = 3(4x2) + 2

(f o g)(x) = 12x2 + 2

(g o f)(x) = g(f(x))

(g o f)(x) = 4(3x + 2)2

(g o f)(x) = 4(9x2 + 12x + 4)

(g o f)(x) = 36x2 + 48x + 16

Jadi, (f o g)(x) = 12x2 + 2 dan (g o f)(x) = 36x2 + 48x + 16.

2. Diketahui (f o g)(x) = 2x + 4 dan f(x) =x – 2. Tentukan fungsi g (x)!

Jawab:

(f o g)(x) = 2x + 4

f(g(x)) = 2x + 4

g(x) – 2 = 2x + 4

g(x) = 2x + 4 + 2

g(x) = 2x + 6

Jadi, fungsi g (x) adalah g(x) = 2x + 6


3. Tentukan f(x) jika (f o g)(x) = 4x + 6 dan g(x) = 2x + 5.


Jawab:


(f o g)(x) = 4x + 6

f(g(x)) = 4x + 6

f (2x + 5) = 4x + 6

Misal u = 2x + 5, maka x = ½(u-5), sehingga:

f (2x + 5) = 4x + 6

f (u) = 4(½(u-5)) + 6

f (u) = 2u – 10 + 6

f (u) = 2u – 4

f (x) = 2x – 4

Jadi, fungsi f(x) = 2x – 4.


4. Jika f(x) = 2x² + 5x dan g(x) = 1/x maka (fog) (2) adalah …


Jawab:

soal komposisi invers no 1


5. Diketahui fungsi 𝑓(𝑥) = 2𝑥 + 1 dan 𝑔(𝑥) = 𝑥² − 3𝑥 + 3. Jika nilai (𝑔 o f) (𝑡) = 7 maka nilai t adalah …


Jawab:

soal komposisi fungsi no 2

6. Diberikan dua buah fungsi masing-masing f(x) dan g(x) berturut-turut adalah sebagai berikut :

f(x) = 3x + 2

g(x) = 2 − x

Tentukan:

a) (f o g)(x)

b) (g o f)(x)


Jawab:


a) (f o g)(x)

“Masukkan g(x) nya ke f(x)” sehingga:

(f o g)(x) = f ( g(x) )

= f (2 − x)

= 3(2 − x) + 2

= 6 − 3x + 2

= − 3x + 8

b) (g o f)(x)

“Masukkan f (x) nya ke g (x)” sehingga:

(g o f)(x) = g ( f (x) )

= g ( 3x + 2)

= 2 − ( 3x + 2)

= 2 − 3x − 2

= − 3x


7. Diketahui f(x) = x2 + 1 dan g(x) = 2x − 3, maka (f o g)(x) = ….


Jawab: 


f(x) = x2 + 1

g(x) = 2x − 3

(f o g)(x) =…….?

Masukkan g(x) nya ke f(x)

(f o g)(x) =(2x − 3)2 + 1

(f o g)(x) = 4x2 − 12x + 9 + 1

(f o g)(x) = 4x2 − 12x + 10


8. Diberikan f(x) = 2x + 6, carilah fungsi invers dari f(x) !


Jawab:


f(x) = 2x + 6

y = 2x + 6

2x = y – 6

x = ½y – 3

f-1(x) = ½x – 3

Jadi, fungsi invers dari f(x) adalah f-1(x) = ½x – 3.


9. Jika f(x) = 2x, g(x) = 3x – 1, dan h(x) = x2, maka (f o g o h) (x) adalah …


Jawab:


(f o g o h) (x) = (f o (g o h) (x))

(f o g o h) (x) = f (g (h(x))

(f o g o h) (x) = f (3(x2) – 1)

(f o g o h) (x) = f (3x2 – 1)

(f o g o h) (x) = 2 (3x2 – 1)

(f o g o h) (x) = 6x2 – 2

Jadi, (f o g o h) (x) = 6x2 – 2.


10. Diketahui f(x) = x + 2 dan g(x) = 2x – 4. Tentukan (g o f)-1 (x) !


Jawab:


(g o f)-1 (x) = (f-1 o g-1) (x)

(g o f)-1 (x) = (f-1 (g-1(x))

Tentukan fungsi f-1(x):

f(x) = x + 2

y = x + 2

x = y – 2

f-1(x) = x – 2

Tentukan fungsi g-1(x):

g(x) = 2x – 4

y = 2x – 4

2x = y + 4

x = ½y + 2

g-1(x) = ½x + 2

Substitusikan f-1 (x) dan g-1 (x) ke (g o f)-1 (x) :

(g o f)-1 (x) = (f-1 (g-1(x))

(g o f)-1 (x) = f-1 (½x + 2)

(g o f)-1 (x) = (½x + 2) – 2

(g o f)-1 (x) = ½x

Jadi, (g o f)-1 (x) = ½x.


11. Jika (f o g) (x) = x + 4, dan g(x) = x – 2. Maka carilah invers dari fungsi f(x).


Jawab: 


(f o g) (x) = x + 4

f(g(x)) = x + 4

f(x – 2) = x + 4

Misal u = x – 2, maka x = u + 2, sehingga

f(x – 2) = x + 4

f(u) = u + 2 + 4

f(u) = u + 6

f(x) = x + 6

y = x + 6

x = y – 6

f-1(x) = x – 6

Jadi, invers dari fungsi f(x) adalah f-1(x) = x – 6.



12. Tentukan f⁻¹(x) dari f(x) = 2x + 4


Jawab: 


f(x) = 2x + 4

f(x) – 4 = 2x

Rumus Fungsi Invers dan 4 contoh soal 91

Rumus Fungsi Invers dan 4 contoh soal 92

13. Tentukan f⁻¹(x) dari Rumus Fungsi Invers dan 4 contoh soal 93

Jawab:

Rumus Fungsi Invers dan 4 contoh soal 93

(7x+3) f(x) = 4x -7

7x f(x) + 3 f(x) = 4x – 7

7x f(x) – 4x = – 3 f(x) – 7

(7 f(x) – 4)x = – 3 f(x) – 7

Rumus Fungsi Invers dan 4 contoh soal 95

Rumus Fungsi Invers dan 4 contoh soal 96

14. Tentukan f⁻¹(x) dari f(x) = x² – 6x + 15!

Jawab:

f(x) = x² – 6x + 15

f(x) = x² – 6x + 9 – 9 + 15

f(x) = (x-3)² + 6

f(x) – 6 = (x-3)²

Rumus Fungsi Invers dan 4 contoh soal 97

Rumus Fungsi Invers dan 4 contoh soal 99

15. Tentukan f⁻¹(x) dari f(x) = eˣ⁺⁷!Rumus Fungsi Invers dan 4 contoh soal 98

Jawab:

f(x) = eˣ⁺⁷

ᵉlog f(x) = x + 7

x = ᵉlog f(x) – 7
(karena ᵉlog x = ln x)

f⁻¹(x) = ln x – 7


Daftar Pustaka:

Judul Posting: Soal Komposisi Fungsi Dan Invers Fungsi

Penulis : rumuspintar.com, soalkimia.com, dan zenius.net

Tahun Posting:  17 Maret 2021, 24 Sept 2021, dan 14 Sept 2021

Tidak ada komentar:

Posting Komentar

REMEDIAL PAT MATEMATIKA

Nama: Allisya Vita Dwi Savitri Kelas: XI IPS 1 Absen: 03