Minggu, 23 Januari 2022

KOORDINAT KUTUB DAN KOORDINAT KARTESIUS

Nama: Allisya Vita Dwi Savitri
Kelas: X IPS 1
Absen: 3


Koordinat Kartesius
Suatu titik merupakan posisi suatu titik dalam arah sumbu x dan dalam arah sumbu y terhadap titik asal O (0,0) sebagai titik pusatnya. Koordinat kartesius ditulis dengan notasi titik P (x,y).

Koordinat Kutub (Polar) 
Suatu titik merupakan besarnya jarak suatu titik tertentu P (x,y) terhadap titik asal O (0,0) dan besarnya sudut yang terbentuk oleh garis OP terhadap sumbu x. Koordinat kutub ditulis dengan notasi P (r,α°).
Untuk mengkonversi koordinat kartesius menjadi koordinat kutub dari suatu titik digunakan rumus sebagai berikut.
Koordinat kartesius ----> Koordinat Kutub
                     P (x,y)    ---->  P (r, α°)
dimana: r = √x²+y²
                α = tan^-1 (y/x) atau tan α = y/x
Nilai α dapat ditentukan dengan menggunakan tabel Matematika Sin Cos Tan.

ada baiknya Anda mengetahui hubungan koordinat cartesius dan koordinat kutub dengan melihat gambar berikut.

Hubungan Koordinat Cartesius dan Koordinat Kutub

Pada gambar tersebut dapat dilihat bahwa koordinat cartesius ditujukan titik P (x,y) dan koordinat kutub P(r,ϑ) dan bisa ditentukan dengan rumus:

Pengertian dan Manfaat Koordinat Cartesius

Jadi, jika diketahui koordinat cartesius P(x,y), maka koordinat kutub bisa ditentukan dengan rumus:

Pengertian dan Manfaat Koordinat kutub

Sedangkan untuk mengkonversi koordinat kutub ke dalam koordinat cartesius digunakan rumus:

pengertian koordinat cartesius

Jadi, jika diketahui koordinat cartesius P(r,ϑ), maka koordinat kutubnya dapat dinyatakan dengan rumus:

pengertian koordinat kutub

Contoh Soal Konversi Koordinat Cartesius dan Koordinat Kutub

Jika diketahui titik-titik koordinat sebagai berikut:

  • P (4,4)
  • P (6,1200)

Ubahlah menjadi koordinat cartesius atau koordinat kutub!

Jawab:

Diketahui koordinat cartesius P (4,4), maka digunakan rumus dan perhitungannya sebagai berikut

contoh soal koordinat cartesius dan koordinat kutub

Jadi, koordinat kutub dari P (4,4) adalah

contoh soal koordinat cartesius dan koordinat kutub

Diketahui koordinat kutub P (6,1200), maka perhitungannya adalah

cara konversi koordinat cartesius dan koordinat kutub

Jadi, koordinat cartesius dari P (6,1200) adalah

cara konversi koordinat kutub ke koordinat cartesius


Contoh Lain:

Untuk mengkonversi koordinat kutub menjadi koordinat kartesius dari suatu titik digunakan rumus sebagai berikut.
Koordinat Kutub ----> Koordinat kartesius
               P (r, α°)  ---->  P (x,y)
dimana: x = r . Cos α°
                y = r . Sin α°

Contoh Soal Konversi Koordinat:

1. Konversikan koordinat kartesius P (4,-3) menjadi koordinat kutub!
Penyelesaian:
Diketahui:  x = 4 dan y = -3
maka r = √x²+y² = √4²+(-3)² = √25 = 5

           α = tan^-1 (y/x) = tan^-1 (-3/4)
              = -36,69 ° atau -37°
Jadi koordinat kutubnya (5, -37°).
2. Konversikan koordinat kartesius P (6,8) menjadi koordinat kutub!
Penyelesaian:
Diketahui:  x = 6 dan y = 8
maka r = √x²+y² = √6²+8² = √100 = 10

           α = tan^-1 (y/x) = tan^-1 (8/6)
              = 53,13 ° atau 53°
Jadi koordinat kutubnya (10, 53°).

3. Konversikan koordinat kutub P (10,60°) menjadi koordinat kartesius!
Penyelesaian:
Diketahui:  r = 10 dan α = 60°
maka x = r . Cos α = 10 . cos 60°
               = 10 . 1/2= 5
dan    y = r . Sin α = 10 . Sin 60°
               = 10 . 1/2√3= 5√3
Jadi koordinat kartesiusnya (5, 5√3).

4. Konversikan koordinat kutub P (20,53°) menjadi koordinat kartesius!
Penyelesaian:
Diketahui:  r = 20 dan α = 53°
maka x = r . Cos α = 20 . cos 53°
               = 20 . 0,6= 12
dan    y = r . Sin α = 20 . Sin 53°
               = 20 . 0,8 = 16
Jadi koordinat kartesiusnya (12, 16).

5. Tentukan koordinat kutub jika diketahui koordinat kartesius suatu titik A (-2√3, -2) !
Penyelesaian:
Diketahui:  x = -2√3 dan y = -2
maka r = √x²+y² = √(-2√3)²+(-2)²
              = √(4.3)+4 = √12+4 = √16 = 4

           α = tan^-1 (y/x) = tan^-1 (-2/-2√3)
              = tan^-1 (1/√3) = 30°
Jadi koordinat kutubnya (4, 30°).


Daftar Pustaka:

Judul: Koordinat Kutub Dan Kartesius

Penulis: https://siswatekunbelajar.blogspot.com/2019/10/konversi-koordinat-cartesius-dan.html
https://mahirmatematika.com/koordinat-cartesius-dan-koordinat-kutub-serta-cara-konversi-dengan-mudah/

Tahun Posting: Oktober 2019 dan Juli 2019

IDENTITAS TRIGONOMETRI

Nama: Allisya Vita Dwi Savitri
Kelas: X IPS 1
Absen: 3

A. PENGERTIAN
Identitas trigonometri adalah suatu relasi atau kalimat terbuka yang memuat fungsi-fungsi trigonometri dan yang bernilai benar untuk setiap penggantian variabel dengan konstanta anggota domain fungsinya. Domainnya sering tidak dinyatakan secara eksplisit. Jika demikian maka umumnya yang dimaksud adalah himpunan bilangan real. Namun dalam trigonometri identitas yang memuat fungsi tangens, kotangens, sekans dan kosekans domain himpunan bilangan real ini sering menimbulkan masalah ketakhinggaan. Karena itu maka dalam hal tersebut, meskipun tidak dinyatakan secara eksplisit, maka syarat terjadinya fungsi tersebut merupakan starat yang perlu diperhitungkan.

rumus identitas trigonometri
rumus identitas trigonometri


Kebenaran suatu relasi atau suatu kalimat terbuka sebagai suatu identitas perlu diverifikasi atau dibuktikan berdasar aturan atau rumus dasar yang mendahuluinya.

B. MEMBUKTIKAN KEBENARAN IDENTITAS
Ada tiga pilihan pembuktian identitas, yaitu: Menggunakan rumus-rumus atau identitas-identitas yang telah dibuktikan kebenarannya.
(i)   ruas kiri diubah bentuknya sehingga menjadi tepat sama dengan ruas kanan.

(ii)  Ruas kanan diubah bentuknya sehingga menjadi tepat sama dengan ruas kiri.

(iii) Ruas kiri diubah bentuknya menjadi suatu bentuk mlain, ruas kanan diubah menjadi bentuk lain, sehingga kedua bentuk akhir itu sama.

Dua yang pertama merupakan pilihan utama. Secara umum, yang diubah adalah biasanya adalah bentuk yang paling kompleks dibuktikan sama dengan bentuk yang lebih sederhana.

Keberhasilan pembuktian kebenaran suatu identitas memerlukan:
(i)   telah dikuasainya relasi, aturan atau rumus-rumus dasar trigonometri dan aljabar.
(ii)  Telah dikuasainya proses pemfaktoran, penyederhanaan, operasi pada bentuk pecahan dan operasi hitung lainnya serta operasi dasar aljabar.
(iii) Pelatihan yang cukup.

Dalam proses pembuktian, selain yang disebutkan pada dua butir pertama di atas, yang sangat penting diperhatikan ialah bahwa (1) perubahan-perubahan bentuk yang dilakukan berorientasi pada tujuan (ruas lain yang dituju). Maksudnya, bentuk-bentuk yang dituju biasanya adalah bentuk atau derajat yang lebih sederhana dan dapat dikondisikan atau “dipaksakan” adanya, dengan penyesuaian bentuk-bentuk lainnya dan (2) selain menggunakan hubungan antara sekans dan tangens, kosekans dan kotangens, fungsi-fungsi tangens, kotangens, sekans, dan kosekans juga dapat diubah ke fungsi sinus dan atau kosinus.

C. RUMUS-RUMUS TRIGONOMETRI

I.  RELASI/RUMUS DASAR FUNGSI TRIGONOMETRI
1. RELASI KEBALIKAN RELASI PEMBAGIAN  RELASI “PYTHAGORAS”
2. FUNGSI TRIGONOMETRI SUDUT-SUDUT YANG BERELASI

Kofungsi:          sin(90 – a) = cos a              cos(90 – a) = sin a

                          Tan(90 – a) = cot a              cot(90 – a) = tan a



                          Sec(90 – a) = csc a              csc(90 – a) = sec a

sin(180 – a)o = sin ao                            sin(180 + a)o = -sin ao

cos(180 – a)o = -cos ao                         cos(180 + a)o = -cos ao

tan(180 – a)o = -tan ao                         tan(180 – a)o = tan ao

sin(360 – a)o = -sin ao                          sin(-ao) = -sin ao

cos(360 – a)o = cos ao                          cos(-ao) = cos ao

tan(360 – a)o = -tan ao                         tan(-ao) = -tan ao

II. RUMUS FUNGSI TRIGONOMETRI DUA SUDUT

1. RUMUS JUMLAH  DAN RUMUS SELISIH
sin(a + b) = sin a cos b + cos a sin b
sin(a – b) = sin a cos b – cos a sin b
cos(a + b) = cos a cos b – sin a sin b
cos(a – b) = cos a cos b + sin a sin b

2. RUMUS SUDUT RANGKAP
sin 2a = 2 sin a cos b
cos 2a = cos2a – sin2a
            = 1 – 2 sin2a        
            = 2 cos2a – 1

III. RUMUS JUMLAH, SELISIH, DAN HASIL KALI FUNGSI SINUS/KOSINUS

1. HASIL KALI SINUS DAN KOSINUS             2. JUMLAH DAN SELIEIH SUDUT


sin a cos b = 1/2(sin(a + b) + sin(a – b))               sin A + sin B = 2 sin 1/2(A + B) cos 1/2(A + B)
cos a sin b = 1/2(sin(a – b) – sin(a – b))                sin A – sin B = 2 cos1/2(A – B) sin1/2 (A – B)
cos a cos b = 1/2(cos(a – b) – cos(a – b))             cos A + cos B = 2 cos 1/2(A + B) cos 1/2(A – B)
sin a sin b = -1/2(cos(a – b) – sin(a – b))              cos A – cos B = -2 sin 1/2(A – B) sin 1/2(A – B)

Kesulitan dalam “menghafal rumus” disebabkan semuanya hendak dihafalkan satu persatu. Untuk memahami hal-hal “serupa tapi tak sama” yang penting adalah mencari bentuk umum dan perbedaannya.

CONTOH SOAL IDENTITAS TRIGONOMETRI:

1. SOAL-SOAL BERDASAR RELASI/RUMUS DASAR FUNGSI TRIGONOMETRI

Contoh 1:
(Pembuktian dilakukan dengan mengubah bentuk ruas kanan untuk disederhanakan ke bentuk ruas kiri. Pilihan ini menuju ruas kiri ini terutama karena bentuk ruas kiri lebih sederhana).
Buktikanlah bahwa sec4q – sec2q = tan4q + tan2q

Bukti:
Alternatif I Dari ruas kiri                                  Alternatif II Dari ruas kanan
Ruas kiri:                                                          Ruas kanan:
sec4q – sec2q                                                     tan4q + tan2q
= sec2q(sec2q – 1)                                             = tan2q(tan2q – 1)
= sec2q x tan2q                                                  = (sec2q – 1) sec2q
= (1 + tan2q) x tan2q                                         = = sec4q – sec2q
= tan2q + tan4q                                                  = ruas kiri (terbukti)
= tan4q – tan2q
= ruas kanan (terbukti)


Daftar Pustaka:

Judul: Identitas Trigonometri

Penulis: https://www.matematrick.com/2016/02/rumus-identitas-trigonometri.html

Tahun Posting: Februari 2016


Selasa, 11 Januari 2022

SUDUT-SUDUT BERELASI PADA KUADRAN I, II, III, IV

Nama: Allisya Vita Dwi Savitri
Kelas: X IPS 1
Absen: 3

Rumus Sudut Berelasi

Dengan memanfaatkan sudut-sudut relasi, kita dapat menghitung nilai perbandingan pada trigonometri untuk sudut pada kuadran lainnya, termasuk sudut yang lebih dari 360° dan sudut negatif.

Sudut Berelasi di Kuadran I

Untuk α = sudut lancip, maka (90° − α) merupakan sudut-sudut kuadran I. Dalam trigonometri, relasi sudut dinyatakan sebagai berikut :

sin (90° − α) = cos α

cos (90° − α) = sin α

tan (90° − α) = cot α

Sudut Berelasi di Kuadran II

Untuk α = sudut lancip, maka (90° + α) dan (180° − α) merupakan sudut-sudut kuadran II. Dalam trigonometri, relasi sudut dinyatakan sebagai berikut :

sin (90° + α) = cos α

cos (90° + α) = -sin α

tan (90° + α) = -cot α

sin (180° − α) = sin α

cos (180° − α) = -cos α

tan (180° − α) = -tan α

Sudut Berelasi Kuadran III

Untuk α = sudut lancip, maka (180° + α) dan (270° − α) merupakan sudut kuadran III. Dalam trigonometri, relasi sudut dinyatakan sebagai berikut :

sin (180° + α) = -sin α

cos (180° + α) = -cos α

tan (180° + α) = tan α

sin (270° − α) = -cos α

cos (270° − α) = -sin α

tan (270° − α) = cot α

Sudut Berelasi Kuadran IV

Untuk α = sudut lancip, maka (270° + α) dan (360° − α) merupakan sudut kuadran IV. Dalam trigonometri, relasi sudut-sudut dinyatakan sebagai berikut :

sin (270° + α) = -cos α

cos (270° + α) = sin α

tan (270° + α) = -cot α

sin (360° − α) = -sin α

cos (360° − α) = cos α

tan (360° − α) = -tan α

Ada 2 hal yang harus diperhatikan, yaitu sudut relasi yang dipakai dan tanda untuk tiap kuadran.

Untuk relasi (90° ± α) atau (270° ± α), maka :

sin → cos

cos → sin

tan → cot

Sedangkan untuk relasi (180° ± α) atau (360° ± α), maka :

sin = sin

cos = cos

tan = tan

Tabel Sudut Berelasi

Berikut adalah table sudut berelasi sin, cos, tan, cosec, sec, dan cotan di kuadran I, II, III, dan IV.

Kuadran IKuadran IIKuadran IIIKuadran IV
Sin αCos (90° – α)Sin (180° – α)Sin (180° + α)Sin (360° – α)
Cos αSin (90° – α)Cos (180° – α)Cos (180° + α)Cos (360° – α)
Tan αCotan (90° – α)Tan (180° – α)Tan (180° + α)Tan (360° – α)
Cosec αSec (90° – α)Cosec (180° – α)Cosec (180° + α)Cosec (360° – α)
Sec αCosec (90° – α)Sec (180° – α)Sec (180° + α)Sec (360° – α)
Cotan αCotan (90° – α)Cotan (180° – α)Cotan (180° + α)Cotan (360° – α)

Tanda masing-masing kuadran

Kuadran I (0 − 90°) = semua positif

Kuadran II (90° − 180°) = sinus positif, lainnya negatif

Kuadran III (180° − 270°) = tangen positif, lainnya negatif


Contoh Soal:

1. Untuk perbandingan trigonometri berikut, nyatakanlah dalam perbandingan trigonometri sudut komplemennya

sin 50°

tan 40°

cos 35°

Jawab :

sin 50° = sin (90° − 400°)

= cos 40°

tan 40° = tan (90° − 50°)

= cot 50°

cos 35° = cos (90° − 55°)

= sin 55°

Ketiganya bernilai positif, karena sudut 50°, 40° dan 35° berada di kuadran I.


2. Nyatakan tiap perbandingan trigonometri berikut di dalam sudut 37° !

tan 153°

sin 243°

cos 333°

Jawab :

Sudut 153° adapada kuadran II, hingga tan 153° memiliki nilai negatif.

tan 153° = tan (180° − 27°)

= -tan 27°

Sudut 243° ada pada kuadran III, sehingga sinus memiliki nilai negatif.

sin 243° = sin (270° − 27°)

= -cos 27°

Sudut 333° ada pada kuadran IV, hingga cosinus memiliki nilai positif.

cos 333° = cos (360° − 27°)

= cos 27°


3. Untuk perbandingan trigonometri berikut, nyatakanlah dalam perbandingan trigonometri sudut komplemennya

sin 20°
tan 40°
cos 53°

Jawab :
sin 20° = sin (90° − 70°)
= cos 70°

tan 40° = tan (90° − 50°)
= cot 50°

cos 53° = cos (90° − 37°)
= sin 37°

Jika diperhatikan pada sin yang berubah menjadi cos, kemudian tan berubah jadi cot sedangkan cos berubah menjadi sin karena relasi yang dipaka adalah (90° − α) dan ketiga perbandingan trigonometri bernilai positif, karena sudut 20°, 40° dan 53° berada di kuadran I.

4. Nyatakan tiap perbandingan trigonometri berikut di dalam sudut 37° !

tan 143°
sin 233°
cos 323°

Jawab :
Sudut 143° adapada kuadran II, hingga tan 143° memiliki nilai negatif.
tan 143° = tan (180° − 37°)
= -tan 37°

Sudut 233° ada pada kuadran III, sehingga sinus memiliki nilai negatif.
sin 233° = sin (270° − 37°)
= -cos 37°
Perhatikan sin berubah menjadi cos dikarenakan relasi yang dipakai (270° − α)

Sudut 323° ada pada kuadran IV, hingga cosinus memiliki nilai positif.
cos 323° = cos (360° − 37°)
= cos 37°

Daftar Pustaka:

Judul: Sudut-Sudut Berelasi Pada Kuadran I, II, III, IV

Penulis: https://gurubelajarku.com/sudut-berelasi/ dan https://rumus.co.id/rumus-sudut-berelasi/

Tahun Posting: 5 dan 30 November 2021

REMEDIAL PAT MATEMATIKA

Nama: Allisya Vita Dwi Savitri Kelas: XI IPS 1 Absen: 03